951 research outputs found

    BD-22 3467, a DAO-type star exciting the nebula Abell 35

    Full text link
    Spectral analyses of hot, compact stars with NLTE (non-local thermodynamical equilibrium) model-atmosphere techniques allow the precise determination of photospheric parameters. The derived photospheric metal abundances are crucial constraints for stellar evolutionary theory. Previous spectral analyses of the exciting star of the nebula A 35, BD-22 3467, were based on He+C+N+O+Si+Fe models only. For our analysis, we use state-of-the-art fully metal-line blanketed NLTE model atmospheres that consider opacities of 23 elements from hydrogen to nickel. For the analysis of high-resolution and high-S/N (signal-to-noise) FUV (far ultraviolet, FUSE) and UV (HST/STIS) observations, we combined stellar-atmosphere models and interstellar line-absorption models to fully reproduce the entire observed UV spectrum. The best agreement with the UV observation of BD-22 3467 is achieved at Teff = 80 +/- 10 kK and log g =7.2 +/- 0.3. While Teff of previous analyses is verified, log g is significantly lower. We re-analyzed lines of silicon and iron (1/100 and about solar abundances, respectively) and for the first time in this star identified argon, chromium, manganese, cobalt, and nickel and determined abundances of 12, 70, 35, 150, and 5 times solar, respectively. Our results partially agree with predictions of diffusion models for DA-type white dwarfs. A combination of photospheric and interstellar line-absorption models reproduces more than 90 % of the observed absorption features. The stellar mass is M ~ 0.48 Msun. BD-22 3467 may not have been massive enough to ascend the asymptotic giant branch and may have evolved directly from the extended horizontal branch to the white dwarf state. This would explain why it is not surrounded by a planetary nebula. However, the star, ionizes the ambient interstellar matter, mimicking a planetary nebula.Comment: 13 pages, 17 figure

    Fast Mesh Refinement in Pseudospectral Optimal Control

    Get PDF
    Mesh refinement in pseudospectral (PS) optimal control is embarrassingly easy --- simply increase the order NN of the Lagrange interpolating polynomial and the mathematics of convergence automates the distribution of the grid points. Unfortunately, as NN increases, the condition number of the resulting linear algebra increases as N2N^2; hence, spectral efficiency and accuracy are lost in practice. In this paper, we advance Birkhoff interpolation concepts over an arbitrary grid to generate well-conditioned PS optimal control discretizations. We show that the condition number increases only as N\sqrt{N} in general, but is independent of NN for the special case of one of the boundary points being fixed. Hence, spectral accuracy and efficiency are maintained as NN increases. The effectiveness of the resulting fast mesh refinement strategy is demonstrated by using \underline{polynomials of over a thousandth order} to solve a low-thrust, long-duration orbit transfer problem.Comment: 27 pages, 12 figures, JGCD April 201

    Education-based interventions for anxiety during the treatment and management of chronic disease: a systematic review protocol.

    Full text link
    ObjectiveThe objective of this systematic review is to evaluate the effectiveness of education-based interventions to decrease patient anxiety during the treatment and management of a chronic disease.IntroductionAnxiety is a major contributor to poor patient outcomes in self-managed chronic disease. Health care manage anxiety prior or during education can adversely affect patient outcomes. By identifying interventions that effectively decrease anxiety, clinicians may be able to consider and implement strategies as standard practice within the education-based programs.Inclusion criteriaThe proposed systematic review will consider studies reporting the effectiveness of any intervention aimed at decreasing participant anxiety prior to a medical procedure or prior to undertaking an education-based program to address a technical aspect of self-management in a health care setting. It will consider studies whose participants are 18 years and older and who are diagnosed with a chronic disease.MethodsThe systematic review aims to find published and unpublished studies in English from 1972 onward. Databases to be searched included MEDLINE, CINAHL, Embase, ERIC, Mosby's index, Cochrane Library, and Scopus. Studies will be reviewed and data extracted by two independent reviewers. The data will include details about the interventions, populations, study methods, and outcomes of significance to the review objectives. Where possible, data will be pooled in a statistical meta-analysis.Systematic review registration numberPROSPERO CRD42019142260

    Designing minimal effective normative systems with the help of lightweight formal methods

    Get PDF
    Normative systems (i.e., a set of rules) are an important approach to achieving effective coordination among (often an arbitrary number of) agents in multiagent systems. A normative system should be effective in ensuring the satisfaction of a desirable system property, and minimal (i.e., not containing norms that unnecessarily over-constrain the behaviors of agents). Designing or even automatically synthesizing minimal effective normative systems is highly non-trivial. Previous attempts on synthesizing such systems through simulations often fail to generate normative systems which are both minimal and effective. In this work, we propose a framework that facilitates designing of minimal effective normative systems using lightweight formal methods. Given a minimal effective normative system which coordinates many agents must be minimal and effective for a small number of agents, we start with automatically synthesizing one such system with a few agents. We then increase the number of agents so as to check whether the same design remains minimal and effective. If it is, we manually establish an induction proof so as to lift the design to an arbitrary number of agents
    corecore